State Representation and Polyomino Placement for the Game Patchwork

Mikael Zayenz Lagerkvist

[Game] State Representation

Polyomino Placement

Patchwork Patchwork

What is Patchwork?

- Released 2014 by Uwe Rosenberg
- → Popular (place 64 on Board Game Geek)
- → 2-player
- → Full information
- ⇒ Experimentally: average 23 plies and branching factor 83

Patchwork rules

- Central time board
- Buying patches and placing on boards
- → Earn buttons and cover the board
- Packing the board well core challenge
 - > To buy a patch it must fit on the board

Game state

- → Representing the current state of a game
- → Must support needs of surrounding code
 - > Possible moves, evaluation, making moves, ...
- → Classical board game engines have hyper-optimized small states
- → Modern board games are more complex

Constraint programming to the rescue!

Use constraint programming for the placement part

Re-use smart code in solvers

Placement using regular expressions

- → Based on paper with Gilles Pesant from 2008
- → Extended with
 - → Explicit rotations
 - → Reified placement
 - → Usage constraints

dation finds allaplaceable

patches Strategy = Placement police Evaluation

Placement policies

- → Classic packing heuristics such as Bottom-Left
- → CP heuristics based
- → Meta-policy for all rotations of patch
- → All placements

Which placement?

- → Evaluation chooses between alternatives
- → Goal is to make best choice
 - → First-fail is the wrong approach
 - > In essence: only left-most branch of search tree
- → Ideas: Left/bottom-most, least bounding box, first, random,...

Propagation Guided Global Regret

- → Choose the placement that makes as little propagation as possible
 - → Morally inverse of impact based search
- → Mathy expression

$$\operatorname{pggr}(B,B',p) = \sum_{i=0}^8 \sum_{j=0}^8 \left\{ egin{array}{ll} 0 & ext{if } B'_{ij} = p \ |B_{ij}| - |B'_{ij}| & ext{otherwise} \end{array}
ight.$$

Which strategy is best?

- → 1000 packings for all 119 combinations tested
- → Most important thing is propagation guided global regret
- → Smart CP heuristics are the wrong choice for policy
- → Policy is a choice between speed and quality

Key takeaways

- → Game state representation using CP
- > Propagation gives us many important signals
- → Play Patchwork!
- → github.com/zayenz/cp-mod-ref-2019-patchwork

Teaser: Mmbr9 poster tomorrow

- → Another fun game!
 - > More complicated polyomino placement problem
- * Key points
 - > Too hard to solve with my current best model
 - → Open challenge, do you have a smart idea?
- → github.com/zayenz/cp-2019-nmbr9/

Thank you!

Questions?