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Abstract. Modern board games are a rich source of entertainment for
many people, but also contain interesting and challenging structures for
game playing research and implementing game playing agents.

This paper studies the game Patchwork, a two player strategy game
using polyomino tile drafting and placement. The core polyomino place-
ment mechanic is implemented in a constraint model using regular con-
straints, extending and improving the model in [8] with: explicit rotation
handling; optional placements; and new constraints for resource usage.
Crucial for implementing good game playing agents is to have great
heuristics for guiding the search when faced with large branching fac-
tors. This paper divides placing tiles into two parts: a policy used for
placing parts and an evaluation used to select among different place-
ments. Policies are designed based on classical packing literature as well
as common standard constraint programming heuristics. For evaluation,
global propagation guided regret is introduced, choosing placements based
on not ruling out later placements.

Extensive evaluations are performed, showing the importance of using a
good evaluation and that the proposed global propagation guided regret
is a very effective guide.

Keywords: Al - Constraint programming - Games - Polyomino - Pack-
ing

1 Introduction

Game playing has long been a core area of traditional AI research. While clas-
sical board games such as Chess and Go are computationally very hard, they
are also somewhat simple in their actual game play mechanics and representa-
tions. Modern board games, such as Settlers of Catan, Ticket to Ride, Agricola,
etc. are a rich source of entertainment and creativity that often include compli-
cated game states and complex rules. The more complicated game states, rules,
and interactions represent a challenge for implementing game playing logic. In
particular, the branching factor is often very large, and at the same time the
complicated states make each step much more computationally expensive.
Patchwork [15] by Uwe Rosenberg is a two player strategy game that uses
polyomino tile drafting and placement. A polyomino is a geometric form formed
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by joining one or more squares edge to edge, for example as in Tetris. It was
released in 2014, and is in the top 100 games on Board Game Geek [3]. The game
is simple to describe for a human, but the central tile placement mechanic is non-
trivial to implement in an effective and correct manner. This paper shows how
to implement the tile placement sub-problem using constraint programming.

Game playing Al typically uses a tree-based search such as Minimax, Alpha-
Beta, or Monte-Carlo Tree Search. For reaching good performance, it is crucial to
have heuristics for guiding the tree search into promising parts of the search tree
quickly, AlphaGo [17] is a prime example of this. In Patchwork, this requires
having good heuristics for packing polyominoes. This paper defines a strategy
as a combination of a policy used for creating placements of the tiles and an
evaluation that chooses among the generated placements.

Policies are designed based on classical packing literature, in particular the
Bottom-Left strategy from [1]. In addition and as contrast, standard constraint
programming heuristics are also used for placement policies, both simple heuris-
tics such as first-fail as well as more advanced modern heuristics such as ac-
cumulated failure count/weighted degree [4]. For evaluation, global propagation
guided regret is introduced, essentially choosing placements based on not ruling
out later placements. This is contrasted with more obvious measures such as
packing to the left or towards a corner.

Contributions This paper proposes using constraint programming for imple-
menting parts of complex game states in modern board games. It extends and
improves a previous polyomino placement model using regular constraints, in-
cluding optional placements and explicit handling of transformations. A formu-
lation for exact resource usage for tiles using regular constraints is also intro-
duced. For guiding search, a new and straight-forward heuristic called propa-
gation guided global regret is designed, that uses look-ahead and the results of
propagation to guide search. Extensive evaluation of the model and proposed
heuristics is done.

Plan of paper In the next section, some background on constraint programming
and Al for game play is given. In Sect. 3 the game Patchwork is described in
detail. Sect. 4 introduces the model for the core placement problem, and the
following section introduces the placement heuristics developed. The heuristics
are evaluated in Sect. 6, and finally some conclusions and directions for future
work are given.

2 Background

This paper is concerned with implementing a representation of a part of a game
state using constraint programming. To give the context, some general back-
ground on both game playing Al and constraint programming is needed.
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2.1 Game playing

Game playing is a branch of Al where agents interact following a certain set of
rules. Common board games are typically discrete and sequential. The number
of potential actions in each step is the branching factor (b), and the number of
actions taken by each agent during a game is the number of plies (d). The full
tree defined by the potential actions is typically very large, in the order of O(b%).

Game playing is most often implemented using heuristic state space explor-
ing game tree search. Typical classical examples are Minimax and Alpha-beta
pruning. More recently, Monte-Carlo Tree Search (MCTS) has become very in-
fluential. For a survey of MCTS methods and results, see [5].

A core issue in implementing a game playing Al system is to represent the
game state. Key requirements are correctness, speed, and memory size. Clas-
sical games such as Chess, Go, and Othello/Reversi have fairly simple game
states, and much effort has been in creating very small and efficient represen-
tations. Modern board games in contrast have more complex state spaces and
rules, which complicate game state implementation. Some recent examples of
implementing game AI for modern board games include Settlers of Catan [19],
Scotland Yard [11], 7 Wonders [14], and Kingdomino [7].

2.2 Constraint programming

Constraint programming is a method for modeling and solving combinatorial
(optimization) problems. Modeling problems with constraint programming is
done by defining the variables of the problem and the relations, called con-
straints, that must hold between these variables for them to represent a solution.
A key feature is that variables have finite domains of possible values.

Constraints can be simple logical and arithmetic constraints as well as com-
plicated global or structural constraints. Of particular interest for this paper
is the the regular constraint introduced by Pesant [12], where a specification
for a regular language (a regular expression or a finite automaton) is used to
constraint a sequence of variables.

3 Patchwork

Patchwork [15] is the first game in a series of games by Uwe Rosenberg that
uses placing polyominoes as a core game mechanic. Patchwork is the simplest of
these games, with the polyomino placement being front and center to the game
play. It is a top-ranking game on the Board Game Geek website, at place 64 out
of more than a hundred thousand entries [3] in July 2019, around five years after
the original release.

3.1 Rules

Patchwork is a two-player game with perfect information. The game consists of
33 polyominoes called patches, a marker, currency markers called buttons, two
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Fig. 1. Patchwork game in progress

player tokens, two 9 by 9 boards (one per player) where patches are to be placed,
and a central time board. Each patch has a button cost, a time cost, and between
0 and 3 buttons for income. The time board has 53 steps in total. Five of the
steps have a special 1 by 1 patch, and 9 steps are marked for income.

At the start of the game, the patches are organized in a circle, with a marker
after the smallest patch. The player tokens are at the start of the time board,
and each player has an empty board and 5 buttons. The game is scored based
on the number of buttons gained and squares covered for each player at the end
of the game.

In each turn, the player whose marker is the furthest back gets to move (if
both players are at the same place, the last to arrive there gets to play). When
making a move, a player may either advance their time marker to the step after
the other player or buy and place a patch. Advancing the time marker to the
step after the opponents time token is always possible, and gives the number of
steps in button income.

To buy and place a patch, the player may choose one of the three next patches
in the circle. The player must pay the indicated number of buttons on the patch
(between 0 and 10) and place the patch on their board. The marker is moved
to the place of the bought patch, and the player token is moved the number of
steps indicated on the patch (between 1 and 6). To buy a patch, the player must
have sufficient funds and the ability to place the patch on their board.

If the player when advancing passes a step marked for income on the time
board, they collect new buttons based on the number of income buttons on the
patches they have placed. If the player is the first to pass one of the special 1
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by 1 patches on the time board, they get the patch and place it on their board
immediately.

The game ends when both players have reached the center of the time board.
The final score is the buttons they have acquired, minus two for each uncovered
square on the board. The first player (if any) that filled a complete 7 by 7 area
of their board gets an extra 7 points. For a full description of the rules, see [15].

3.2 Strategy

The game requires balancing income, filling squares, and placing patches to not
disallow future patch placements. The time remaining for a player can be viewed
as a resource that is spent when making moves.

Initially the player has 5—2-9-9 = —157 points. If no patches are purchased
(only advancing the time marker), the final score for the player would be —157+
53 = —104. A normal good score for patchwork is positive, leading to a goal of
earning at least 3 points per square advanced (157/53 =~ 2.96).

Each patch can be evaluated in isolation for the total change in score that
patch would give. There are four main things to consider for a patch P:

Size Sp, the number of squares the patch will cover.

Button cost Cp, the number of buttons to pay for the patch.

Time cost Tp, the number of steps to advance the time marker.
Button income Bp, the number of buttons to collect at income spots.

The total income gained by the end of the game when buying patch P at time
t is determined by the number of remaining button income spots on the board
I(t) (starting at 9 and mostly evenly spaced out).

Assuming that we are interested in maximizing our point gain per time used
for patch P at time t, the following formula can be used

2.8p—Cp+I(t)-Bp

GPt) = min(Tp, 53 — t)

(1)

Two additional issues relevant to the above evaluation are the 7-by-7 bonus
and the size 1 squares on the board. The bonus is a property that needs to be
planned for, so we leave it to the planning. The 5 size 1 squares are each on their
own worth 2 points and can easily be added when evaluating GG, but depend on
the current game state. Their main use however is in either completing a 7-by-7
square or preventing the opponent from completing their own 7-by-7 square.
Again, we leave this out of the basic evaluation since it is question of planning
and not static evaluation.

3.3 Characteristics

The game is as mentioned a 2-player game with perfect information. The game
set-up includes a shuffle of the polyominoes giving 32! ~ 2.6-103° different games.
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The branching factor can be quite large. The first part is the choice of either
advancing the time marker or buying one of the three next patches (if possible).
Given that a patch is bought, it must be placed on the board. For example, in
the initial step, a 2 by 3 L-part can be placed in 42 different positions for each
of the 8 symmetries of the patch.

The average branching factor is experimentally found by running 100 random
games. Both players use a simple heuristic, by choosing tiles based on Equation 1
and placing tiles using BL-Every and Regret (see Sections 5 and 6), In this
setting, the game averages 23.2 plies for the first player and 23 plies for the
second player, with an average branching factor of 83.2. There is also a slight
first-player advantage in this setting, with the first player winning 56 games.

4 Placement model

Core for implementing a game state for Patchwork is the players individual
boards where patches are placed. Implementing placement and packing from
scratch is complicated and error-prone. We use constraint programming to quickly
and reliably implement the packing part of the game state.

The model for placing parts on the board builds upon the placement model
for polyominoes introduced in [8]. The model uses regular constraints to spec-
ify the required placement of a patch on a board. First the original model is
explained briefly, and then the additions for Patchwork are given.

4.1 Original model

Consider the placement of the patch in Figure 2 in the 4-by-4 grid shown. Each
square is represented by a 0/1-variable (1 meaning the patch covers the square),
and the grid is encoded in row-major order. All placements of the patch are en-
coded by the regular expression 0*110310310*. This encoding includes all valid
placements, but it also includes some invalid ones (see right side in Figure 3).
To forbid such placements, an extra column of dummy squares is added that are
fixed to 0 as shown in Figure 4, and the expression is changed to 0*110410%10*.
Rotations and flips are handled by combining the regular expressions for each
transform using disjunction, relying on the DFA minimization for removing
states representing equal rotations.

Unique sets B, of 0/1 variables are used for each patch p. The variables
for different patches are connected with integer variables B with domain values
representing patches, empty squares, and the end column: PUemptyUend. While
the constraint can be defined directly on the B variables, [8] showed that using
the auxiliary B, variables performs much better.

4.2 Extensions

The original model is not enough for implementing a model for Patchwork. In
particular, optional placements and control of transformations is needed, as is
measuring usage.
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AIB|C|D
E|F|G|H
I|/J|K|L
M|N|O|P

Fig. 2. Part to place and the grid to place on.

Fig. 3. A valid (left) and an erroneous (right) placement

Transforms For heuristics, it can be useful to branch on which, if any, of the up
to 8 transforms of a patch is placed (transforms include rotations and flips of the
patches). In order to do this, the unique transforms are generated beforehand in
the model set-up code, instead of always generating all 8 transforms and using
DFA minimization to handle symmetries. To encode the different rotations, 8
Boolean control values S, for patch p in each possible transform s are prepended
to each placement expression, with exactly 1 of the variables set to 1 for each
transform. Note that for simplicity the same number of Boolean variables are
prepended, regardless of the number of non-symmetric transforms generated.

Optional placements In Patchwork, not all patches are placed on the board.
While it is possible to dynamically add variables and constraints during solv-
ing/searching, it is better to set up all constraints for all patches from the start
and controlling placement of a patch using reification. Given a patch p with
board variables B, placement expression R, for all transforms, a 0/1 control
variable U, indicating if the patch is to be placed, the 8 S, Boolean variables
indicating which transform is used, and a Boolean variable IV, indicating that
no transform was used, the following constraint is posted:

regular((10R,) | (010%), U,N,S,B,) (2)

This is a domain-consistent full reification of the placement constraint; when
a patch can no longer be placed the propagation will set U, to 0. Note that the
second value corresponds to no transform chosen. This is so that the Boolean
variables IV, S, can be channeled into a single integer variable with domain 0..8

Usage It is well-known that cumulative usage reasoning can be very effective
for packing problems [18]. A first step towards cumulative reasoning is to model
resource usage. Usage reasoning per patch is added to the model using regular
expressions. Variables CPEC for column sums and RPET for row sums indicating the
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A|B|C|D|Q
E|F|CG|H|R
I|J|K|L|S
M|{N|O|P|T

Fig. 4. Grid extended with dummy column, and placement in new grid.

number of ones in each column ¢ and row 7 for patch p in B,. Consider again
the patch in Figure 4: the first column it is placed in has a single one and the
second column has three ones, while it has usage two, one, and one for its rows.
This means that CPE belongs to the language 0*130* and RPE belongs to the
language 0*2110*. Concatenating the column (including the dummy column)
and row usages into CPE sz , all usages for all placements belong to the language
0*130*00*2110*. Using the same infrastructure for symmetries, pre-fixing with
the control variable U, and transform S, gives a domain consistent full reification
for the usage constraint for a single patch.

5 Placing patches on the board

Armed with a model that expresses the underlying placement model, heuristics
are needed that can be used when a player chooses a patch and needs to place
it on the board. It is important to remember here that in the context of game
playing (both for MCTS-style roll-outs and for traditional tree search), a patch
needs to be fully placed, without deciding on any of the other parts concurrently.
Also important, there is no possibility of a back-track.

We call the overall heuristic used to generate a placement on the board a strat-
egy. The strategy is divided into two independent parts, a policy that generates
placements of a tile, and an evaluation that chooses among different placements.
The concept of a placement policy is common in packing literature. The policy is
typically incomplete; most policies can not be used to find a guaranteed optimal
packing.

5.1 Placement policy

A policy in this paper is is a method used to place a tile on a partially filled board
in some manner, potentially generating many different placements. Policies can
be implemented using standard constraint programming branching and search.
Which placement that is used is not something the policy needs to consider. A
central goal for a policy is to cheaply produce some good placements of a part.
In constraint programming terms, a policy can be regarded as an incomplete
large-step heuristic branching without ordering of the alternatives produced.
Recall from Section 4 that a patch p has 0/1 variables B, representing the
placement of that patch, variables CPEC and RPET representing the number of
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occupied squares in each column and row for the patch, and control variables S,
representing the transform of the patch.

Bottom-Left One of the most common heuristics for placement problems is the
Bottom-Left heuristic [1] (BL), in which each part is placed in the bottom-most
position, and among all bottom-most positions the left-most is chosen. Worth
noting is that in the context of a symmetric and bounded board the direction is
arbitrary (i.e., Right-Top is the same as Bottom-Left, and so on), compared to
the original context where packing was on a roll of material that was infinite in
the top/up direction.

To implement the policy, integer variables representing the first occupied row
RIJ; (and C’ZJ; for columns) are needed. For patches that are not placed on a board
the sentinel value of one past the end is used. The row variable is defined using
the following schema for the patch p using the 8 row sum variables Rﬁ (column
variables defined similarly).

RI €{0.9}, Zo.s €{0,1}, Fo.s €{0,1} (3)
Vio.s Zi < Ry, =0 (4)

Zo=Fy, Visigs Fi & Fi_1NZ; (5)

(6)

B-Y

1=0..8

The Z variables indicate if there is no placement in a row, and the F' vari-
ables define if an index is part of the first run of zero variables. Summing up
F gives the first index, or 9 (one past the end) if there is no placement. This
is somewhat similar to the decomposition for length first_sequence in the
Global Constraint Catalogue [2].

Using these variables standard constraint programming variable/value heuris-
tics can be used to implement Bottom-Left for the placement of patch p. Branch-
ings are added on first Cg and then RZJ: trying the smallest value first. A third
branching on the B, variables is added with in-order true-first choices. Searching
for the first solution using DFS will give the Bottom-Left placement of the patch
in some transformation.

BL/LB Building on the standard BL heuristic, it is easy to extend to a heuristic
that places in both Bottom-Left and Left-Bottom order producing two results.
Two individual DFS searches are made, one with branching first on CZJ: and then
on Rg, and one with the order of the branchings reversed. In both cases the B,
branching is kept the same.

Pareto BL Pareto Bottom-Left is a generalization of Bottom-Left, where instead
of only finding a solution for a single value in one direction, we try all values in
that direction. This corresponds to testing all columns as the minimum column
and finding the minimum row placement for each. The minimum row/column
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values for the placements found ((r;,¢;)) form a Pareto front under the natural
point wise order relation, thus the name,

In practice, to limit the amount of branching in the beginning and keep
solutions heuristically relevant, not all columns are tested for placement. The
maximum column with some fixed placement on the board cp.x is found before
search, and only columns in 0..cpax + 1 are used. For a partial packing that is
still close to a corner, this means that non-needed placements close to the other
corner are not tested.

Given a set of columns to test, the implementation manually assigns the Cg
to each values in 0..cpax + 1. After this step, for each column the search proceeds
as for Bottom-Left.

Policies based on standard heuristics There is a rich area of research into general
heuristics for constraint programming. We use five different general heuristics
that are available in Gecode, the system used for implementation. The heuristic
values used are:

In Order Use the order of the variables. This is actually quite close to a
Bottom-Left style heuristic, but instead of working on the bounding box
of the patch, it works on the individual squares.

Size The domain size for variables. Commonly called First fail.

AFC The accumulated failure count [4] (also known as weighted degree) is the
sum of all the times propagators connected to the variable have failed a
search tree.

Action Action is the number of times the domain of a variable has been re-
duced [10] (also known as activity).

CHB CHB (Conflict History-based Branching, [9,16]) uses a combination of

domain reduction counts and when failures occur.

The branching is done on the B, Boolean variables, but for all but the sim-
plest (In Order), the heuristic values would not make much sense on the B,
variables: the domain size is always 2 and there is typically not much activity
on the Boolean variables. The base version is to use the heuristic value asso-
ciated with the corresponding B variable that represents all the patches. For
AFC, Activity, and CHB variants are also defined that sum the heuristic value
over both the corresponding B variable and the corresponding B; variables for
all patches t (including the current patch p). The summed variants are called
S AFC, Y Activity, and > CHB.

For AFC, Activity, CHB, and their summed variants, the heuristic values
that are used in the policies are divided by the domain size of the variable, as is
common. This is denoted X/Size for the measure X.

For all the standard heuristics, equal values use the order of the variables as
a tie-breaker.

Every transform The above heuristics all produce a result in some transforma-
tion, without actually making any specific choice. For all the heuristics, variants
that create placements for all possible rotations of a patch are also tested.
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To implement an every transform variant for a placement policy, all possible
values for the rotation variable U, are assigned first. For each assignment, the
base policy is applied to generate a placement of the patch.

All Finally, just generating all the possible placement and letting the evaluation
make the choice is possible. This is simply implemented as a standard DFS
search for all solutions when branching over the B, variables. Note that All will
naturally always generate solutions for all rotations, so it does not make sens to
use the every transform modification.

5.2 Placement evaluation

Many of the policies produce more than one alternative. To choose among the
various alternatives, an evaluation is used that takes multiple placements and
returns the “best” one. In constraint programming terms, an evaluation can
be seen as an ordering of the alternatives produced by a branching, so that a
left-most exploration order would follow the evaluations heuristic. Compared
to many constraint programming branchings, the evaluation expects the alter-
natives to be of equal type; they would not work for classical ¢V —c¢ two-way
branching such as = d V x # d.

Each placement evaluated by the evaluation is represented by the full search
state with the patch placed and all the other board variables present and all
constraints fully propagated. Also, the evaluations have access to the state before
the placement, for comparisons.

First and Random The evaluation First simply chooses the first alternative.
This is not a meaningful evaluation (except for heuristics that only generate one
placement), but is interesting as a baseline. Similarly, the Random evaluation
chooses one of the alternatives at random.

Bottom. Left, and Area A placement of a patch has a maximum extent to the
right and to the top. The Left evaluation chooses the placement with minimum
right extent, while the Bottom evaluation chooses the minimum top extent.
The Area evaluation measures the increase in the bounding box of the fixed
placements, promoting placements that are kept tight to a corner.

Propagation Guided Global Regret When placing a patch, propagation will re-
move possible placements for other patches. This is a valuable signal on how
many possibilities we have left, and can be used to guide the search.

We call this the Propagation Guided Global Regret, since it uses propagation
to give an indication of the effect of a choice globally. More formally, we define it
as follows. Let the original variables for the whole board be B, and the variables
after a placement and propagation of that placement be B’. The expression B;;
represents the square at indexes ¢ and j, and |B;;| represents the domain size of
the variable. The patch to place is named p. The heuristic value is defined by
the following summation.
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8 0 if |Bij| =1
pger(B,B,p) = _> {0 if Bj; =p (7)

8
i=0 j=0 |Bij| — |B§j| otherwise

Regret is a well-known heuristic in constraint programming, and is usually
defined as the difference between the minimum and next to minimum (and sim-
ilarly for maximum) value in a domain. This is mostly useful when there is a
direct connection between variable domain values and some optimization criteria.
However, the concept of regret is more general than the typical single-variable
domain centric value optimizing view. Here we lift the concept to be with respect
to keeping possible future options open.

In a sense, propagation guided global regret is the anti-thesis of Impact based
search [13], where variable/value pairs are chosen based on the amount of prop-
agation that they trigger historically. The context here is very different though,
with the amount of propagation used is a negative signal. In addition, it is used
for the current assignment using look-ahead, and not based on statistics of his-
toric values.

6 Experimental evaluation

This section reports results of experimental evaluation to clarify how the different
strategies formed by combinations of the policies and evaluations introduced
perform.

6.1 Implementation and Execution Environment

The implementation consists of a game state implemented in C+-+17 with the
placement model implemented using the Gecode [6] constraint programming
system version 6.2.0. The code is single-threaded only. While it would be pos-
sible to use multi-threaded search, single-threaded execution gives a simple and
more stable evaluation. The implementation is available at htts://github.com/
zayenz/cp-mod-ref-2019-patchwork. All experiments are run on a Macbook
Pro 15 with a 6-core 2.7 GHz Intel Core i7 processor and 16 GiB memory.

For the learning heuristics (those that use AFC, Activity, and CHB) the
statistics they are based on are collected throughout the whole experiment, giv-
ing them their best possible chance of learning interesting aspects.

6.2 Core packing problem

The central aspect in the game play is that a sequence of patches are chosen
and placed on the board. Each placement must be done without knowing which
future patches will be placed. A pure packing problem that captures this is
to order all the patches, and to test placing each patch in turn, incrementally
building up a patchwork.
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In table 1 results are shown for testing the same 1000 random orders of
parts on 119 strategies. The strategies are combinations of policies with Some
or Every transformation matched with different evaluations. Each strategy has
four metrics. For each metric, the best value is marked with dark blue, those
within 1% of the best value are marked with medium blue, and those within 5%
are marked with light blue background. The metrics are

Area The mean amount of area placed after all patches have been placed. This
is the main metric in the game, and is a natural metric on the power of
a strategy to make good placements without knowing what patches to try
next.

Streak The mean number of patches placed before the first failure. This is a
measure of how much the strategy manages to keep options open, but does
not necessarily correspond to the amount of area placed.

Time The mean time spent making a single placement of a patch in millisec-
onds.

Alts The mean number of alternatives produced for each patch.

Note that for strategies that only create one alternative, the evaluation does
not matter, but is tested for completeness. The evaluation ReverseRegret (choos-
ing the maximum instead of minimum regret) is added to show the behaviour
when explicitly going against the intuition that keeping options open for packing
is a good idea.

For all learning heuristics, only the version with the heuristic value divided
by domain size is tested. We do not show the results for Y AFC, > Activity,
and CHB since they were slightly worse than their corresponding summed /non-
summed variants. The full data is available on request.

6.3 Results of packing experiments

The most striking observation, is that using propagation guided global regret is
clearly the most important factor in maximizing the amount of area placed. The
fact that regret is best when trying all placements is a strong indication that it
is an evaluation that can truly guide the placement, and not just choose among
a set of probably good placements. The reverse of regret is clearly the worst
among all evaluations, validating the assumption that regret is a good measure.

Among the other evaluations, it is worth noting that when using a heuristic
that places first bottom then left, it is better to use an evaluation that agrees
with the direction placements are made in (that is, for Bottom-Left it is better
to make choices based on bottomness than leftness).

Given a reasonable evaluation (that is, not First, Random, nor ReverseRe-
gret), the policies based on packing heuristics are better than generic constraint
programming heuristics. The most interesting stand-out here is In Order, since
it combines a very simple constraint programming definition and speed of eval-
uation with actually being similar in effect to classical packing heuristics.

In implementing game tree search, the time used for expanding nodes is
crucial to get reasonable performance, since there is typically a hard limit on
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In Order Size AFC/Size Action/Size >_CHB/Size BL BL/LB Pareto BL All
Some Every Some Every Some Every Some Every Some Every Some Every Some Every Some Every Every
Area 76.51 72.25 66.49 65.95 73.73 71.68 74.97 71.70 74.98 72.16 76.12 72.28 76.12 72.28 76.12 73.75 76.51
First Streak 15.79 14.06 12.22 12.50 14.50 13.72 15.52 14.15 14.85 13.72 15.62 14.46 15.62 14.46 15.62 14.88 15.79
Time 25.37 86.90 24.22 83.72 24.72 87.86 25.16 88.90 25.01 88.90 162.30 316.35 217.67 501.64 722.31 1669.19 1815.18
Alts 1.00 2.99 1.00 2.95 1.00 2.97 1.00 3.03 1.00 2.97 1.00 3.04 1.94 6.02 3.64 9.62 E
Area 76.51  72.25 66.49  66.18 73.73 T71.63 74.97 71.50 74.98 72.08 76.12 72.35 75.43 71.91 72.72 70.62 69.49
Random Streak 15.79 14.26 12.22 12.27 14.50 13.60 15.51 14.02 14.85 13.71 15.62 14.36 15.66 14.18 14.19 13.10 12.29
Time 26.03 89.09 24.15 82.85 24.76 87.68 25.11 88.47 25.05 88.42 161.86 317.08 210.55 497.82 1208.40 2793.32 1197.45
Alts 1.00 3.02 1.00 2.91 1.00 2.98 1.00 3.02 1.00 2.96 1.00 3.02 1.94 5.99 4.87 11.22 51.41
Area 76.51 72.79 66.49 66.05 73.73 72.03 74.99 71.91 74.97 72.48 76.12 73.47 76.11 73.47 75.93 74.47 75.08
Left Streak 15.79 14.08 12.22 12.18 14.50 13.70 15.52 14.22 14.85 13.97 15.62 14.91 15.62 14.91 15.51 15.13 14.95
Time 25.24 88.13 E 82.60 24.75 88.46 25.11 89.28 24.98 89.49 162.11 303.51 217.95 447.45 726.92 1127.38 1657.31
Alts 1.00 3.00 1.00 2.91 1.00 2.98 1.00 3.03 1.00 2.97 1.00 3.05 1.94 6.05 3.60 7.95 65.69
Area 76.51  72.25 66.49  65.95 73.73 T71.68 75.00 71.74 74.98 72.16 76.12 72.28 76.12 72.28 76.12 73.75 76.51
Bottom Streak 15.79 14.06 12.22 12.50 14.50 13.72 15.54 14.15 14.85 13.72 15.62 14.46 15.62 14.46 15.62 14.88 15.79
Time 25.30 86.58 24.13 83.87 24.67 87.80 25.13 89.22 25.03 88.71 162.03 315.70 217.42 501.39 722.04 1668.19 1815.77
Alts 1.00 2.99 1.00 2.95 1.00 2.97 1.00 3.03 1.00 2.97 1.00 3.04 1.94 6.02 3.64 9.62 E
Area 76.51 72.79 66.49 66.05 73.73 72.03 74.98 71.91 74.98 72.48 76.12 73.47 76.11 73.47 75.93 74.47 75.08
Area Streak 15.79 14.08 12.22 12.18 14.50 13.70 15.51 14.24 14.85 13.97 15.62 14.91 15.62 14.91 15.51 15.13 14.95
Time 25.26  88.03 24.16 82.82 24.67 88.14 25.12 89.41 25.07 89.45 161.79  303.60 217.66  447.02 727.14 1129.46 1652.75
Alts 1.00 3.00 1.00 2.91 1.00 2.98 1.00 3.03 1.00 2.97 1.00 3.05 1.94 6.05 3.60 7.95 65.69
Area 76.51 77.13 66.49 69.67 73.73 75.11 75.00 76.23 74.98 75.75 76.12 77.20 77.21 78.21 77.86 78.36 E
Regret Streak 15.79 16.21 12.22 13.76 14.50 15.36 15.56 15.99 14.85 15.52 15.62 16.24 16.39 E 16.43 16.65 16.56
Time 25.29 96.33 24.23 89.96 24.71 95.29 25.06 98.15 25.03 96.50 161.95 355.38 223.62 606.60 1426.38 3550.62 1464.55
Alts 1.00 3.17 1.00 3.03 1.00 3.12 1.00 3.21 1.00 3.11 1.00 3.17 1.94 6.46 4.76 12.39 59.48
Area 76.51  68.91 66.49  63.34 75.14  68.97 74.12  68.54 74.78  69.69 76.12 68.75 73.34 67.57 67.46 64.70 62.73
ReverseRegret Streak 15.79 12.82 12.22 11.03 15.46 12.68 14.90 12.39 14.96 12.34 15.62 12.80 14.93 12.32 11.59 10.57 9.49
Time 26.64 84.63 24.81 79.56 26.24 84.72 25.72 83.81 25.58 83.63 164.97 278.77 187.41 404.47 1174.86 2116.79 1195.69
Alts 1.00 2.92 1.00 2.82 1.00 2.93 1.00 2.90 1.00 2.87 1.00 2.92 1.94 5.72 4.94 9.82 52.05

Table 1. Results for combinations of policy and evaluation for the core packing problem. Best values for each metric are indicated with

blue, darker being better.
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the deliberation time of an agent. It is clear that many of the strategies take much
more time than would be feasible. Some simple profiling of the code indicates
that there is some overhead in the implementation in how many clones are
generated of the Gecode search spaces, which could potentially be optimized.
Parallel execution is also a clear potential for improving time.

In game play, combinations of strategies can be used. For example, when im-
plementing MCTS it is common to use different strategies for the tree expansion
and for the roll outs. For tree expansion, quality of moves and strong ordering is
important, while roll-outs have very strong speed requirements. A combination
of a more expensive tree expansion such as BL/LB-Every + Regret, and a simple
and fast roll-out strategy such as In Order-Some + First could be useful.

In conclusion, the most important decision is to use propagation guided global
regret to choose among possible placements, with the choice of policy guided by
the time-requirements needed.

7 Conclusions

This paper has introduced the use of constraint programming for representing
parts of a game state for the game Patchwork. The model represents a packing
of an unknown subset of polyominoes, that are to be chosen during game tree
search. The packing model extended and improved a previous polyomino pack-
ing model based on regular constraints. The use of constraint programming
simplified the task of implementing the packing part of the game state, with a
high-level specification.

To guide the search, several new strategies were developed for placing patches.
Placement policies inspired by classical packing literature are shown to be good.
For choosing among different placements, the concept of propagation guided
global regret was introduced and shown to be very effective in guiding search
towards good placements of patches.

Future work This paper has focused on the strategies used for placing poly-
ominoes when implementing the game Patchwork. The natural next step is to
also apply the model in game playing agents. An investigation into the relative
complexity of implementing the packing model without the support of a con-
straint programming system would also be interesting. In particular, something
like global propagation guided regret would be very hard to implement by hand.
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