
Laser Cutting Path Planning using CP

Mikael Z. Lagerkvist, Martin Nordkvist, and Magnus Rattfeldt

Tomologic AB – Sweden
firstname.lastname@tomologic.com

Abstract. Sheet metal cutting using lasers is ubiquitous in the industry,
and is used to produce everything from home decorations to excavator
scoops. Metal waste is costly for the industry, both in terms of money,
but also in terms of an increased environmental footprint. Tomologic
develops a unique optimisation system that can reduce this waste dras-
tically. This paper presents a CP approach to the Laser Cutting Path

Planning Problem (LCPPP), a very hard important sub problem within
the Tomologic optimisation system. A solution to the LCPPP is, given a
packing of some details on a metal sheet, an ordering of the cuts neces-
sary to separate the details from the sheet. The problem is complicated
by physical factors such as heat from the laser beam, or details moving
or flexing. In the paper, we explain the problem in detail and present our
CP approach that we developed for solving the problem. The possibility
(in CP) of custom search heuristics turned out to be crucial to be able to
solve the problem efficiently, as these could be made to guide the search
to good first solutions.

1 Introduction

Most people have come across the problem of planning different shapes (hearts,
Christmas trees, stars, etc) on gingerbread dough, and trying to minimise the
dough waste that needs to be rolled out again. See Fig. 1 on the following page
for an example with hearts where, in 1(a), only three hearts fit but, when aligning
the hearts together as in 1(b), one more heart can be made to fit. Now, replace
the dough by metal sheets, and the technology to separate the shapes (or details)
from those metal sheets by laser cutting machines. Then, aligning the details as
in Fig. 1(b) is not trivial anymore, and the waste cannot simply be “rolled out”
again, but the recycling process is very costly.

The sheet metal cutting market is huge: the number of active laser cutting
machines is estimated to be around 50,000 globally, each such machine consumes
around 1,500 tonnes of raw material each year, and the amount of metal waste
is typically between 20 and 50 percent [1]. So any (general) decrease in waste
means great savings!

Tomologic develops a unique optimisation system that can reduce this global
metal waste considerably, by deploying a technology that makes alignments such
as those in Fig. 1(b) possible. This is of great importance not only for the
manufacturing industry, for which there are obvious cost savings, but also for the
whole world, since the industry’s environmental footprint can be made smaller.

(a) (b)

Fig. 1. How many hearts can be obtained from the gingerbread dough?

Tomologic’s solution is based on technical knowledge of, given a packing of
some details on a metal sheet, how to plan the cutting paths of the laser beam to
separate aligned details, and still ensuring a high quality of the end products. In
this paper, we formalise this very important and hard combinatorial sub problem
that must be solved within the Tomologic optimisation system, and describe a
constraint programming approach that we developed for solving it. The main
contributions of this paper are:

– the introduction of a new problem domain in the context of a real life indus-
trial problem of great importance;

– a constraint programming approach for the problem, including a formal
model of variables and constraints, as well as customised search heuristics
for solving the model.

In the following, we first discuss background and context in Sect. 2, after
which we introduce the Laser Cutting Path Planning Problem in Sect. 3. We
then present our constraint programming model in Sect. 4, where we start by
describing the decision variables of the problem, followed by problem constraints
as well as implied ones. Section 5 describes the search heuristics and optimisation
goal, and Sect. 6 gives an overview of the implementation. Finally, in Sect. 7 we
discuss current status and constraint programming impacts on the application
development.

2 Optimisation for Sheet Metal Cutting

One of the large problems faced by the manufacturing industry today is metal
waste. This is inevitable when, out of large metal sheets, using lasers or related
techniques to produce anything from home decorations to excavator scoops. Such
metal waste needs to be (i) transported from the manufacturing shops to metal
recycling facilities (often overseas); (ii) melt down and restored to new raw mate-
rial (for example new metal sheets); (iii) transported back to the manufacturing
shops for further processing. This means increased costs, both in terms of money,
but also in terms of increased environmental footprints for the end products. So
the objective when optimising sheet metal cutting is very easy to understand:

Given a set of production details and a number of metal sheets, find
a packing of the details on the sheets that minimises the overall metal
waste.

2.1 Current Technology

The traditional technology that is used for planning production details on metal
sheets is nesting [2], where the details are planned on the sheets using two-
dimensional irregular shape packing algorithms. Current state-of-the-art nesting
software can produce sophisticated plans, but suffers from one important limi-
tation:

To ensure quality of the production details, any two adjacent details must
be separated by a safety distance.

This safety distance depends on the type and thickness of the metal sheets and,
of course, means that large amounts of waste in the form of metal skeletons are
unavoidable. For example, using the traditional nesting technology for solving
the hearts problem shown in Fig. 1 on the preceding page, the solution in 1(b) is
not possible, as the laser cutting machine would not be capable of cutting those
aligned shapes safely.

However, by using a safety distance, the only condition (disregarding any op-
timisation criteria) that needs to be taken into account when developing nesting
algorithms, is the geometric non-overlapping constraint on all details. Given any
packing that fulfils this condition, the details are cut in isolation in some order,
without affecting each other.

2.2 The Tomologic Optimisation System

Tomologic introduces a completely new technology for planning production de-
tails on metal sheets. This technology is based on the observation that, under
some conditions, the safety distance between details can often be omitted. This
means that details can be aligned and separated by the width of the laser beam
only, and that cutting paths can be shared between several details. Tomologic’s
knowledge of when this is safe to do is based on many years of hands on experi-
ence of manual production planning for, and operation of, laser cutting machines.

However, the alignment of production details complicates the problem consid-
erably since (i) there are many more conditions to take into account in addition
to the geometric non-overlapping constraint, such as when and how two details
can be aligned; and (ii) the cutting path planning is much more complicated,
since the order of the cuts now depends on the packing.

Although complicating the problem, the alignment of production details also
means that the waste can be reduced considerably. For example, it is often the
case that waste in the form of metal skeletons (coming from the use of a safety
distance) is replaced by much less waste in the form of metal frames (see Fig. 2
on the following page, for example). Furthermore, the alignment of production

Fig. 2. Tomologic’s technology (left) compared to the traditional nesting technology
(right).

details also means that sophisticated cutting patterns can be deployed, which
can decrease the time and energy necessary to drive the laser beam.

So the Tomologic optimisation system must solve two interacting problems,
the first one being how to find a packing of the production details on the metal
sheets, while the second one being how to plan the cutting paths given such a
packing of details. In this paper we focus on the second problem, that we call
the Laser Cutting Path Planning Problem, presented in the next section.

3 The Laser Cutting Path Planning Problem

Given a packing of a set of production details on a metal sheet, the Laser Cutting
Path Planning Problem (LCPPP) is the problem of finding an order of the cuts
necessary to separate the details from the sheet. In order to discuss this in greater
detail, we need to introduce some terminology.

A packing consists of a number of clusters, each such cluster contains a num-
ber of details that are connected (directly or indirectly) to each other through
alignment cuts (two sides of different details separated by the width of the laser
beam only). Such clusters are separated by a safety distance. This is in contrast
with the traditional nesting technology, where each cluster can contain at most
one detail. A pocket is an area within a cluster that is not a detail, but completely
surrounded by at least two connected details.

A cutting path describes the movement of the laser beam while it is turned
on. This is analogous to paper pencil drawing, from the time that the pencil

first touches the paper until it is lifted again. Given a cluster, we call a complete
sequence (that separates each detail in the cluster from any other detail or the
rest of the metal sheet) of such cutting paths a cutting plan for the cluster. A
piercing is the process of creating a small hole in the metal sheet at the start
of each cutting path. Due to additional heat produced by the laser beam in this
process, there must be some space between piercings and details, or the details
may suffer from defects. This means that after each piercing, and before starting
the actual cut (that is, the cut separating the relevant detail from the rest of the
sheet), there must be a short lead-in cut.

To reason about solutions to the LCPPP, we represent each cluster as a
graph: the cut graph of the cluster. The edges of a cut graph represent cuts; either
cuts separating details from the rest of the metal sheet, or cuts separating two
details from each other (alignment cuts). The nodes of a cut graph represent the
connections where two or more cuts meet (the incoming cuts of the connections).
A cut graph is generated by identifying the cuts and connections of the cluster.
In addition to natural connections that occur at the endpoints of alignment
cuts, additional connections are introduced at positions that are well suited for
piercings.

Example 1. Consider the instance of the LCPPP shown in Fig. 3(a) on the next
page, consisting of one cluster containing four details (labeled d1, . . . , d4), and
one pocket (labeled p1), to be separated from a metal sheet (its edges shown
dashed). To separate the details from the metal sheet, thirteen cuts must be
made, in some order. These cuts are labeled c1, . . . , c13 in the cut graph of
Fig. 3(b), and should be interpreted as follows. Cut c1 separates d1 from the
metal sheet; alignment cut c2 separates details d1 and d2 from each other; align-
ment cut c3 separates details d2 and d3 from each other; alignment cuts c4 and
c5 separate details d1 and d3 from each other; cut c6 and c7 separate detail d1
from pocket p1; alignment cuts c8 and c10 separate details d1 and d4 from each
other; cut c9 separates detail d3 from pocket p1; cut c11 separates detail d4 from
pocket p1. Finally, cuts c12 and c13 separate d4 from the metal sheet.

Each cut starts and ends in two out of nine connections labeled k1, . . . ,
k9 (these connections are also shown on the details in (a) for clarity). Possible
cutting path starting connections are identified in the cut graph by additional
circles. The connection k9 was introduced as an additional such possible starting
connection.

A possible cutting plan for this instance is: c4 starting in k3; c5 → c2 → c3
starting in k4; c8 → c6 → c9 → c7 starting in k5; c10 → c11 starting in k8;
c13 → c1 → c12 starting in k9.

A solution to the LCPPP is a cutting plan for each cluster that separates the
production details from the rest of the metal sheet, and still ensuring production
reliability of those details. This is achieved by imposing additional constraints
on cutting plans. We may also impose optimisation criteria on cutting plans, for
example with respect to improved detail quality or lower cutting time. These con-
straints and optimisation criteria are discussed in the context of our constraint
programming approach in the following three sections.

d2 d3 d4d1 p1

k6

k2

k1

k3

k4 k7

k8 k9

k5

(a)

c11

k1

k7

k5

k6

k8

c8

c3c2c1

c10

c12

c4 c6

k2 c5 c7

c13

k4

k3

c9

k9

(b)

Fig. 3. An instance of the Laser Cutting Path Planning Problem.

4 A Constraint Programming Model

4.1 Assumptions and Notation

We consider an instance of the LCPPP where cuts C = {c1, . . . , cn} with connec-
tions K must be made to separate a number of production details from a metal
sheet. For simplicity, we assume a single cluster; problems involving several such
clusters are beyond the scope of this paper. Given this, we use

– cut part as a collective name for a detail or a pocket;
– incoming(k) to denote the incoming cuts to connection k ∈ K; and
– arrays indexed by cuts as placeholders for our decision variables.

By abuse of notation we will sometimes use variable array names to denote
sets or functions, and write formulas on elements, subsets, or function applica-
tions of such array names. For example, we use

– cutorder(P) to denote the cut order variables (defined below) of any of the
cut parts in P ; and

– cutparts(x) to denote the cut parts (at most two) that x is a cut order
variable of.

This is exemplified further in Ex. 2 below.

4.2 Decision Variables and Their Domains

Cut order variables. We use an array cutorder[c1, . . . , cn] of cut order variables
to represent the order in which the cuts are made, where the domain of each
such variable is 1..n. Furthermore, we let cutorder[⊥] = −∞.

Cut start variables. We use an array cutstart[c1, . . . , cn] of cut start variables
to represent cutting path starting points, where the domain of each such variable
is the starting connections of the corresponding cut, and ⊥ (meaning that the
corresponding cut does not start a cutting path).

Predecessor variables. We use an array pred[c1, . . . , cn] of predecessor vari-
ables to represent the predecessors of the cuts, where the domain of each such
variable is its adjacent cuts, and ⊥ (meaning that the corresponding cut does
not have a predecessor, since it starts a cutting path).

Example 2. Recalling the instance of Ex. 1 on page 5, the initial variable domains
are as follows (only showing the domains for c1, c2, and c13):

cutorder[c1, . . . , c13] =
[

1..13, 1..13, . . . , 1..13
]

cutstart[c1, . . . , c13] =
[

{k5, k8,⊥}, {⊥}, . . . , {k8, k9,⊥}
]

pred[c1, . . . , c13] =
[

{c8, c10, c12, c13,⊥}, {c3..c5,⊥}, . . . , {c1, c10, c12,⊥}
]

Now, the cutting plan given in Ex. 1 is equivalent to the assignments:

cutorder[c1, . . . , c13] = [12, 3, 4, 1, 2, 6, 8, 5, 7, 9, 10, 13, 11]

cutstart[c1, . . . , c13] = [⊥,⊥,⊥, k3, k4,⊥,⊥, k5,⊥, k8,⊥,⊥, k9]

pred[c1, . . . , c13] = [c13, c5, c2,⊥,⊥, c8, c9,⊥, c6,⊥, c10, c1,⊥]

Let cutorder[ci] = xi for 1 ≤ i ≤ n. The cut order variables of d2 and {d4, p1}
respectively are :

cutorder({d2}) = {x2, x3}

cutorder({d4, p1}) = {x6, . . . , x13}

The cut parts of x1 and x3 respectively are:

cutparts(x1) = {d1}

cutparts(x3) = {d2, d3}

4.3 Problem Constraints

We present the constraints first in English and then formally, possibly followed
by an explanation.

Basic graph constraints. These constraints ensure that cutorder, cutstart
and pred are correctly related.

(a) Any given cut order can only be assigned once.

alldifferent(cutorder)

(b) The cut order of a predecessor must be one less than the cut it precedes.

∀
c∈C

cutorder[c] = cutorder[pred[c]] + 1 ⇐⇒ pred[c] ≠ ⊥

(c) A starting cut must not have a predecessor.

∀
c∈C

cutstart[c] ≠ ⊥ ⇐⇒ pred[c] = ⊥

(d) A starting cut must have a correctly directed successor.

∀
c∈C

(

cutstart[c] = k ∧ k ≠ ⊥ ⇒ ∀
d∈incoming(k)

pred[d] ≠ c
)

Each cut starting a cutting path in a connection k must not precede any
of k ’s adjacent cuts. Otherwise, the cutting path would contain cuts with
opposite directions (which is not possible, since a cutting path can have at
most one start where it pierces the metal sheet).

Constraints ensuring production reliability. These constraints ensure that
important properties from the physical reality of laser cutting are maintained.

(e) For some sets K ⊂ K of conflicting connections, at most one of those con-
nections can start a cutting path.

(

∀
k∈K

∀
c∈incoming(k)

bck ⇐⇒ cutstart[c] = k

)

∧
count(b) ≤ 1

The counting is done using additional boolean variables.
(f) A cut separating two cut parts must not be the final cut for both parts.

∀
x∈cutorder

(

|cutparts(x)| = 2 ⇒ max(cutorder(cutparts(x))) > x
)

For each cut order variable x that corresponds to a cut c separating two cut
parts p and q, the maximum cut order for any cut order variable of p or q
must be greater than x. Otherwise, c is the final cut for both p and q.

(g) For some pairs of sets of cuts A,B ⊂ C, all cuts of A must be cut before the
final cut of B.

max(cutorder(A)) < max(cutorder(B))

(h) For some sets of adjacent cuts A ⊂ C all sharing the same connection, no
more than M pairs of those cuts may pass that connection consecutively.

(

∀
c<d∈A

bdc ⇐⇒ (pred[c] = d ∨ pred[d] = c)

)

∧
count(b) ≤ M

The counting is done using additional boolean variables.
(i) For some cut triplets (a, b, c) sharing a connection k, when a and b are cut

consecutively, they must be cut after c.

(pred[a] = b ∨ pred[b] = a)
⇒

cutorder[c] < min(cutorder[a], cutorder[b])

4.4 Implied Constraints

(j) The cut order of a predecessor must be strictly less than the cut it precedes.

∀
c∈C

cutorder[pred[c]] < cutorder[c]

This constraint is implied by (b), and uses the property of cutorder[⊥] =
−∞.

(k) For all connections with exactly three incoming cuts, at most one pair of
those cuts can pass through it consecutively.

∀
k∈K:|incoming(k)|=3

⎛

⎜

⎜

⎝

(

∀
c<d∈incoming(k)

bcd ⇐⇒ (pred[c] = d ∨ pred[c] = d)

)

∧
count(b) ≤ 1

⎞

⎟

⎟

⎠

For each connection k with exactly three incoming cuts, the number of dis-
tinct pairs of its cuts for which either is the predecessor of the other, can
be at most one, since there are only three cuts in total. The counting is
done using additional boolean variables for each distinct pair of cuts. This
constraint is implied by the local properties around connections with three
connected cuts.

(l) The directed graph described by the predecessor variables consists of a set of
simple paths.

mirrored = [mo, . . . ,mn−1] (1)

∀
0≤i<n

mi =

{

x if pi = cx
−(i+ 1) if pi = ⊥

(2)

alldifferent(mirrored) (3)

The implied constraint is a path constraint [3], and the above decomposi-
tion models the constraint. The variables used in (1) above are similar to
the pred variables, the difference being that the cutting path starting point
marker is indicated by unique negative values. The constraints in (2) can
be implemented with element constraints since it is a total functional rela-
tion [4]. Replacing the cutting path starting point marker means that for
any solution, all variables will be assigned different values, enforced by (3).
This is in contrast with the pred variables, where all cuts starting paths are
assigned ⊥.

5 Optimisation and Search

Real world instances of the LCPPP can be quite large. It is not unreasonable to
expect instances with thousands of variables and more than ten thousand con-
straints. This has several consequences for solving such instances to optimality,
including high memory usage and long solving times. However, our goal is to find

a good enough solution quickly, and not to find and prove the optimal solution.
If no solution is found in a reasonable time frame, we consider that particular
sub problem (or cluster) to be infeasible, and discard it as a potential solution.
In our context, a reasonable time frame is a few seconds of running time.

In the following sub sections, we describe the general optimisation goal for
the LCPPP, and the custom search heuristics that we developed.

5.1 Optimisation Goal

The overall goal of solving an instance of the LCPPP is to find a satisfying
solution that has some combination of good properties in the context of sheet
metal cutting using lasers. While the details of this goal is beyond the scope of
this paper, we outline some general guide lines, in their order of importance.

– Avoiding certain cut starts. All cutting path starting connections are not
equally good, but some starting connections may lead to undesirable marks.

– Minimising the number of cutting paths. Starting a new cutting path takes
time, since it means that the metal sheet needs to be pierced.

– Minimising the laser movement distance. Moving the laser head between
cutting paths takes time.

The first two goals are modelled as a minimisation problem over a sum using a
valuation for each cutting path starting connection. While the third goal could be
expressed in a similar way, our solution handles this more softly in combination
with domain specific search patterns. These search patterns come from crucial
domain knowledge of sheet metal cutting using lasers. Handling the third goal
in this way works fine in our current approach, but it would likely have to be
handled differently if a more general search heuristic was used, such as large
neighbourhood search [5].

5.2 Custom Search Heuristics

The decision variables of the model in Sect. 4 are rather low level, while they
are used to describe high level concepts such as graphs and their properties. So
any single assignment to a variable has a low propagation impact, since it does
not meaningfully constrain the solution space. In addition, most assignments
have no or next to no impact on the optimisation goal. As a consequence, using
standard constraint programming search techniques, either simple ones such as
fail first, or more complicated ones such as weighted degree [6] or activity based
search [7], is not effective enough. As a consequence of this, in order to find good
enough solutions to the LCPPP quickly, we have implemented a set of custom
search heuristics comprised by what we call actions and strategies. These custom
search heuristics then drive the search towards good first solutions.

In the following, a search node is a partially instantiated solution, and a
choice is a set of alternatives that restrict such a search node further.

Actions, strategies, and heuristics. An action is a function that accepts a
search node, and returns a choice, or nothing if the action does not apply to the
search node.

A strategy is a list of actions, and a specification of how to conduct the
search among these actions. The specification indicates the maximum number
of dispatches of each action, if the action should create choices or assignments
(single alternative choices), or any limits that should be imposed on the search.
For example, by limiting the number of times an action can be dispatched to one,
we can create a sub list of strategies that must succeed on its first dispatch, or
fail the whole strategy upon backtracking. A strategy will run the first applicable
action that is available. If no action is applicable, the strategy is finished.

A heuristic is a list of strategies. Given a suitable set of strategies, an over-
arching heuristic that guides the search to good solutions can be defined.

Example actions. We have defined over 40 different actions that perform
meaningful choices for an LCPPP instance. Some examples are:

– Extend alignment cut. Given an open ended cutting path of alignment cuts,
extend it with a successor alignment cut.

– Start left bottom alignment cut. Start a new cutting path of alignment cuts,
choosing the left-most bottom-most possibility.

– Start corner aligned contour. Start a new cutting path in a graph contour
corner.

– Assign top left order. Assign the top left unassigned cut order variable its
minimum value.

The actions can roughly be classified into actions that start new cutting
paths, actions that extend current cutting paths, and actions that assign cut
orders. Most defined actions have some geometric meaning, and are derived
from practical experience of how to plan cutting paths.

Example strategies. New strategies that implement some desired behaviour
are fairly easy to define by combining lists of actions. A typical such strategy
is defined by an action starting a new cutting path, followed by a sequence of
actions that extend the cutting path according to different properties. We have
defined 15 different strategies so far for the LCPPP.

Example heuristics. An example of a typical heuristic is as follows:

1. Build open cutting paths of alignment cuts that can be extended in both
directions.

2. Assign good starting points.
3. Extend internal cutting paths from the chosen starting points.
4. Extend external cutting paths on the graph contour.
5. Assign remaining starting points, extend remaining cutting paths, and assign

remaining cut orders.

When the final step is reached, the (partial) solution typically already has the
interesting features defined already. This means that we are only interested in the
existence of a single solution, which is similar to the radiotherapy planning [8]
problem, as well as the use cases for the once-combinator [9]. At the moment,
we have defined two main heuristics.

Example 3. Consider the instance of the LCPPP described in Ex. 1 on page 5,
and recall that k1 and k2 are not possible cutting path starting connections.
Following the general outline of a heuristic above, the search could perform the
following steps to reach the described solution.

1. Set pred[c2] = c5 (speculative choice). Since k1 is not a possible cutting path
starting connection, set pred[c3] = c2 (all other alternatives at this point
would force k1 as a starting connection).

2. Connections k3, k4, k5 and k8 are identified as good starting points around
pocket p1.

3. Set cutstart[c5] = k4 and cutstart[c4] = k3 for paths from the pocket. Assign
values for the paths c8 → c6 → c9 → c7 starting in k5 and c10 → c11 starting
in k8, finishing up the assigned starting points.

4. Assign the graph contour cuts, choosing k9 (as best alternative among the
available connections) as the starting point.

5. At this point, only the order remains to be set. Starting from top left among
non graph contour cuts, cuts are ordered with k4 starting the first cut, fol-
lowed by cuts starting from (in order) k3, k5, k8, and k9

6 Implementation

The model and the search has been implemented using the Gecode [10, 11] con-
straint programming system, version 3.7.3, as a stand-alone C++ application.
The Tomologic optimisation system is implemented mostly in Java and Scala.
Instead of integrating the C++ code using native calls, the model is run as a sep-
arate process. This ensures full separation between the Tomologic optimisation
system and the CP application.

To facilitate the communication between Java and C++, a custom XML
format is used for describing instances of the problem. In addition to the instance
description, the XML definition also contains a list of the strategies that should
be used. Each strategy is defined with the actions it contains and the search
method to be used. This allows the application code to programmatically select
the overall heuristic that is to be used for a particular instance, and to run the
constraint model using different search strategies on the same instance.

The full implementation, including all supporting code such as visualisation
and XML parsing consists of around 5000 lines of code and 1500 lines of docu-
mentation.

Variables. All variables are simple boolean or integer variables, and the largest
domains for the integer variables are bounded by the number of cuts in the
instance.

Constraints and propagators. The constraints used in the model are mostly
standard simple constraints. These include arithmetic, logical, counting, element,
and min/max constraints. Such constraints are directly available as propagators
in most constraint programming systems. The only global constraint in the model
is alldifferent. After experimentation, we have concluded that the appropriate
consistency level to use for the alldifferent propagation on the cutorder variables
when solving LCPPP instances is bounds consistency [12].

Search. The search strategies are implemented as Gecode branchers [13]. Each
brancher contains a list of implementations of actions that produce descriptions
of the choices to be made. To run the strategies, a custom search function is used,
where a normal Gecode depth first search engine is created for each strategy
that is started. Since Gecode returns a partially instantiated solution when all
currently installed branchers are exhausted, that returned solution can be used
as the root node for the search engine for the next strategy.

Graphical inspection support. Invaluable for understanding the search pro-
cess in large instances is to have good visualisation support. The Gecode Gist
search tree visualiser [14, 11] was used for understanding the search process.
To understand partial solutions, a graphical visualisation was implemented that
shows the currently assigned cutting paths and cut order domains. This gives
a much more high level view of the current state, compared to just looking at
the variables and their current domains. See Fig. 4 on the following page for an
example Gist tree and visualised search state. The visualised search state shows
the cutting paths under construction. For cuts that are known to be part of a
specific cutting path, the cut is highlighted and their current cut order domain
is displayed.

Parallel search. In most cases the search trees are quite deep, and exploration
only visits a very small part of the state space; the final number of leaf nodes
visited is much lower than the number of nodes in the explored search tree. This
means that using parallel search would not be very effective, since it does not
significantly speed up getting to the first solution. However, in the surrounding
context of the LCPPP, the machine is fully loaded by other tasks and, hence,
not using parallelism for the LCPPP is not an issue.

7 Constraint Programming Impact

Before the CP approach described in this paper was developed, we used a cus-
tomised greedy algorithm for solving the LCPPP. At this time, the problem was
not formalised, but based on the interaction between (non-CP) developers and
our sheet metal cutting domain experts. The greedy algorithm quickly became
difficult to maintain and, as more features in the form of additional constraints

(a) (b)

Fig. 4. Gist search tree (a) and visualisation of the current cutting paths (b). The
cutting paths with assigned cut starts are shown as arrows indicating their directions.
Green such cutting paths indicate pocket cuts, while red such cutting paths indicate
alignment cuts. Grey cuts indicate cuts that do not yet belong to a cutting path. The
ranges indicate the current domain for the respective cut order variables.

were introduced, the more often the algorithm had a hard time finding feasi-
ble solutions. It became clear that a more flexible and powerful approach was
needed.

The formal modelling of the LCPPP that was necessary for the CP approach
has been crucial for understanding the problem, and for gaining confidence in
the generated solutions. Using CP as the vehicle for such a formalisation was
very natural, since it allows the expression of the domain constraints and search
heuristics in a reasonably high level.

Formalising, implementing, and testing a large and complicated constraint
programming model such as the LCPPP requires a significant amount of time
and experience with constraint technology. In total this took about four months,
which included one constraint programming expert responsible full time, discus-
sions with two sheet metal cutting domain experts, and one additional constraint
programming expert, helping with constraint formulations and implementation.

In the process of formalising and understanding the LCPPP, it was possible
to restructure and reimplement the previously used greedy algorithm by using
an architecture inspired by the CP approach. (This was also a necessity since,
during the development of the CP approach, having some reasonably working
solution was crucial.) This has had the effect that the greedy algorithm can
now handle many more cases and is much more robust, so its performance has
increased drastically as a direct consequence of developing the CP approach.
Due to this and to other practical reasons, the maintenance of the CP approach
has stopped, and is currently not used in production. However, even though it is

not used in production anymore for solving the LCPPP, we strongly believe CP
to be a key factor in the process leading to our current solution. Keeping this
in mind, constraint programming may very well be our first approach in future
applications.

Acknowledgements. We thank Magnus Gedda and Jim Wilenius for many
fruitful discussions about details of the LCPPP, as well as the anonymous ref-
erees for constructive reviews.

References

1. Tomologic AB. Market Survey (2010)
2. Bennell, J.A., Oliveira, J.F.: A tutorial in irregular shape packing problems. Jour-

nal of the Operational Research Society 60(S1) (2009) S93–S105
3. Beldiceanu, N., Carlsson, M., Rampon, J.X.: Global constraint catalog, working

version as of April 24, 2013. http://www.emn.fr/z-info/sdemasse/gccat/
4. Stuckey, P.J., Tack, G.: Minizinc with functions. In Gomes, C., Sellmann, M., eds.:

CP-AI-OR. Volume 7874 of LNCS., Springer (2013) 268–283
5. Shaw, P.: Using constraint programming and local search methods to solve vehicle

routing problems. In Maher, M.J., Puget, J.F., eds.: CP. Volume 1520 of Lecture
Notes in Computer Science., Springer (1998) 417–431

6. Boussemart, F., Hemery, F., Lecoutre, C., Sais, L.: Boosting systematic search
by weighting constraints. In de Mántaras, R.L., Saitta, L., eds.: ECAI, IOS Press
(2004) 146–150

7. Michel, L., Hentenryck, P.V.: Activity-based search for black-box constraint pro-
gramming solvers. In Beldiceanu, N., Jussien, N., Pinson, E., eds.: CPAIOR. Vol-
ume 7298 of Lecture Notes in Computer Science., Springer (2012) 228–243

8. Baatar, D., Boland, N., Brand, S., Stuckey, P.J.: CP and IP approaches to cancer
radiotherapy delivery optimization. Constraints 16(2) (2011) 173–194

9. Schrijvers, T., Tack, G., Wuille, P., Samulowitz, H., Stuckey, P.J.: Search combi-
nators. Constraints 18(2) (2013) 269–305

10. Gecode team: Gecode, the generic constraint development environment (2012)
http://www.gecode.org/.

11. Schulte, C., Tack, G., Lagerkvist, M.Z.: Modeling and Programming with Gecode.
(2012) Corresponds to Gecode 3.7.3.

12. López-Ortiz, A., Quimper, C.G., Tromp, J., van Beek, P.: A fast and simple
algorithm for bounds consistency of the alldifferent constraint. In Gottlob, G.,
Walsh, T., eds.: IJCAI, Morgan Kaufmann (2003) 245–250

13. Schulte, C.: Programming branchers. In Schulte, C., Tack, G., Lagerkvist, M.Z.,
eds.: Modeling and Programming with Gecode. (2012) Corresponds to Gecode
3.7.3.

14. Schulte, C.: Oz explorer: A visual constraint programming tool. In Kuchen, H.,
Swierstra, S.D., eds.: PLILP. Volume 1140 of Lecture Notes in Computer Science.,
Springer (1996) 477–478

View publication statsView publication stats

